您的瀏覽器不支援 JavaScript喔,請開啟 Javascript 功能。
跳到主要內容
新聞總覽
view
更多新聞總覽
體育
【社論】運動員的「振奮」該被限制嗎? 以黑豹旗冠軍戰全壘打看棒球場「潛規則」
2024-11-22
生活
夜拆天橋引眾怒 北市府主張改善交通安全
焦點
2024-11-22
校園
命名甄選日程延誤 南大更動流程引質疑
2024-11-22
新知
微型偵測分析患者生理數據 AI照護助居家善終
2024-11-22
校園
學生鑽漏洞未戴安全帽 中正嚴格取締成效有限
2024-11-22
新知
嘉大研發大豆飼料 成馬糞海膽復育新解方
2024-11-22
新知
農業廢棄物再利用 化身吸附劑淨化重金屬汙水
2024-11-22
校園
國際
新知
藝文
生活
體育
專題
影音
首頁
新聞總覽
全部文章
返回首頁
新聞期別 :
請選擇...
第1800期
第1799期
第1798期
第1797期
第1796期
第1795期
第1794期
第1793期
第1792期
第1791期
第1790期
第1789期
第1788期
第1787期
第1786期
第1785期
第1784期
第1783期
第1782期
第1781期
第1780期
第1779期
第1778期
第1777期
第1776期
第1775期
第1774期
第1773期
第1772期
第1771期
第1770期
第1769期
第1768期
第1767期
第1766期
第1765期
第1764期
第1763期
第1762期
第1761期
第1760期
第1759期
第1758期
第1757期
第1756期
第1755期
第1754期
第1753期
第1752期
第1751期
第1750期
第1749期
第1748期
第1747期
第1746期
第1745期
第1744期
第1743期
第1742期
第1741期
第1740期
第1739期
第1738期
第1737期
第1736期
第1735期
第1734期
第1733期
第1732期
第1731期
第1730期
第1729期
第1728期
第1727期
第1726期
第1725期
第1724期
第1723期
第1722期
第1721期
第1720期
第1719期
第1718期
第1717期
第1716期
第1715期
第1714期
第1713期
第1712期
第1711期
第1710期
第1709期
第1708期
第1707期
第1706期
第1705期
第1704期
第1703期
第1702期
第1701期
第1700期
第1699期
第1698期
第1697期
第1696期
第1695期
第1694期
第1693期
第1692期
第1691期
第1690期
第1689期
第1688期
第1687期
第1686期
第1685期
第1684期
第1683期
第1682期
第1681期
第1680期
第1679期
第1678期
第1677期
第1676期
第1675期
第1674期
第1673期
第1672期
第1671期
第1670期
第1669期
第1668期
第1667期
第1666期
第1665期
第1664期
第1663期
第1662期
第1661期
第1660期
第1659期
第1658期
第1657期
第1656期
第1655期
第1654期
第1653期
第1651期
第1650期
第1649期
第1648期
第1647期
第1646期
第1645期
第1644期
第1643期
第1642期
第1641期
第1640期
第1639期
第1638期
第1637期
第1636期
第1635期
第1634期
第1633期
第1632期
第1631期
第1630期
第1629期
第1628期
第1627期
第1626期
第1625期
第1624期
第1623期
第1622期
第1621期
第1620期
第1619期
第1618期
第1617期
第1616期
第1615期
第1614期
第1613期
第1612期
第1611期
第1610期
第1609期
第1608期
第1607期
第1606期
第1605期
第1604期
第1603期
第1602期
第1601期
第1599期
第1598期
第1597期
第1596期
第1595期
第1594期
第1593期
第1592期
關鍵字搜尋 :
搜尋
全部文章
校園
國際
新知
藝文
生活
體育
專題
影音
新知
第1733期
陽明創廣譜光感測器 提升光電轉換效率
2020-10-22
【記者林昕璿綜合報導】光感測器是透過接收光波產生電流的裝置,常被運用於遙控家電、智慧型手機的影像感測。國立陽明大學生醫光電研究所教授薛特(Surojit Chattopadhyay)的研究團隊與國立臺灣科技大學、國家實驗研究院學者合作,共同研發新型奈米材料,進而開發出兼具光譜吸收範圍廣,及光電轉換效率佳的光感測器。 國立陽明大學生醫光電所教授薛特帶領博士生高聖禹,研發新型奈米材料,打造廣譜光感測器。 圖/薛特實驗室提供薛特表示,傳統半導體的光檢測器,雖然光響應(註)速度快,但是光能轉換的電流小。而電流是因為自由電子移動而產生,因此電流小代表裝置在光的吸收遷移率(即電子移動)上受到限制。雖然現今廠商亦有開發新式材料的光感測器,如二硫化鉬(MoS2),但其仍有電子移動性差,及光可吸收範圍侷限於紫外線或可見光的缺點。註:光響應為光電轉換能力的指標,意為每一瓦特的光,可轉換為多少安培的電量。為了突破光響應度不足的問題,薛特與他帶領的生醫光電所博士生高聖禹(Sandip Ghosh)想到利用二硫化鉬吸光的特性,結合可吸收紅外線的材料——上轉換奈米粒子,來製作光感測器。團隊以二硫化鉬作為主要電荷運輸載體,並藉由讓兩物質同時吸收光的方式,大幅提升光響應能力。 二硫化鉬吸光範圍約在650微米,透過結合上轉換奈米材料,能讓吸光範圍達到1064微米。 圖/薛特實驗室提供「儘管響應度值很小,但現今商用的感測器,仍多以矽半導體製成。」薛特解釋,矽半導體製成的感測器需透過低溫才能展現良好的性能。而團隊的廣譜光感測器不僅可吸收光譜範圍廣,吸光範圍涵蓋紫外線、可見光與紅外線,且在室溫就可進行,並同時具有高穩定性。團隊表示,有別於一般光感測器每瓦特僅能產生約一安培的電流,團隊的感測器在呈現最佳感測性能時,其光電轉換能力是一般感測器的1000多倍。此外,團隊研發的廣譜光感測器具有體積小的優勢,大小只有4.5微米。不過在製作階段,將二硫化鉬、 上轉換奈米粒子兩種材料結合的過程,需花費18到20小時。另一方面,薛特表示,雖然廣譜光感測器實現創紀錄的光響應性,但相比傳統矽為基底的光感測器,在光響應速度上仍有差距。而在商業運用上,此廣譜光感測器還需進一步改良,薛特說:「大多數智慧型手機使用半導體處理,但我們的設備並沒有半導體,因此還要時間來達成技術上的兼容與封裝。」國立彰化師範大學電子工程系教授林得裕也表示,此技術的高光電轉換率已是很大的突破,但若要運用於智慧手機的拍攝功能,速度仍過慢而不能及時顯現影像。不過在低端運用如遙控器,僅需再經過相關設計與系統工程,就可望進入商品化。