您的瀏覽器不支援 JavaScript喔,請開啟 Javascript 功能。
跳到主要內容
新聞總覽
view
更多新聞總覽
國際
紐大學生要求擴大反歧視法 推動多元族群自主權
2024-11-08
國際
印度梅大學程未獲認證 護理系學生抗議持續升溫
焦點
2024-11-08
國際
達大附屬7學院控待遇不公 學生盼獨立成新校
焦點
2024-11-08
國際
馬來西亞租屋爭議頻傳 青年組自治會仍難自保
2024-11-08
國際
中國大學學歷貶值 失業率過高致青年就業壓力大
2024-11-08
國際
日本青年選舉參與度低 大學生組織望提升投票意願
2024-11-08
國際
港府欲整治假學歷 學生質疑政策治標不治本
2024-11-08
校園
國際
新知
藝文
生活
體育
專題
影音
首頁
新聞總覽
全部文章
返回首頁
新聞期別 :
請選擇...
第1798期
第1797期
第1796期
第1795期
第1794期
第1793期
第1792期
第1791期
第1790期
第1789期
第1788期
第1787期
第1786期
第1785期
第1784期
第1783期
第1782期
第1781期
第1780期
第1779期
第1778期
第1777期
第1776期
第1775期
第1774期
第1773期
第1772期
第1771期
第1770期
第1769期
第1768期
第1767期
第1766期
第1765期
第1764期
第1763期
第1762期
第1761期
第1760期
第1759期
第1758期
第1757期
第1756期
第1755期
第1754期
第1753期
第1752期
第1751期
第1750期
第1749期
第1748期
第1747期
第1746期
第1745期
第1744期
第1743期
第1742期
第1741期
第1740期
第1739期
第1738期
第1737期
第1736期
第1735期
第1734期
第1733期
第1732期
第1731期
第1730期
第1729期
第1728期
第1727期
第1726期
第1725期
第1724期
第1723期
第1722期
第1721期
第1720期
第1719期
第1718期
第1717期
第1716期
第1715期
第1714期
第1713期
第1712期
第1711期
第1710期
第1709期
第1708期
第1707期
第1706期
第1705期
第1704期
第1703期
第1702期
第1701期
第1700期
第1699期
第1698期
第1697期
第1696期
第1695期
第1694期
第1693期
第1692期
第1691期
第1690期
第1689期
第1688期
第1687期
第1686期
第1685期
第1684期
第1683期
第1682期
第1681期
第1680期
第1679期
第1678期
第1677期
第1676期
第1675期
第1674期
第1673期
第1672期
第1671期
第1670期
第1669期
第1668期
第1667期
第1666期
第1665期
第1664期
第1663期
第1662期
第1661期
第1660期
第1659期
第1658期
第1657期
第1656期
第1655期
第1654期
第1653期
第1651期
第1650期
第1649期
第1648期
第1647期
第1646期
第1645期
第1644期
第1643期
第1642期
第1641期
第1640期
第1639期
第1638期
第1637期
第1636期
第1635期
第1634期
第1633期
第1632期
第1631期
第1630期
第1629期
第1628期
第1627期
第1626期
第1625期
第1624期
第1623期
第1622期
第1621期
第1620期
第1619期
第1618期
第1617期
第1616期
第1615期
第1614期
第1613期
第1612期
第1611期
第1610期
第1609期
第1608期
第1607期
第1606期
第1605期
第1604期
第1603期
第1602期
第1601期
第1599期
第1598期
第1597期
第1596期
第1595期
第1594期
第1593期
第1592期
關鍵字搜尋 :
搜尋
全部文章
校園
國際
新知
藝文
生活
體育
專題
影音
新知
第1798期
AI模型預測肺癌進展 助病患精準治療
2024-11-07
【記者姚孟汝報導】在肺癌病例中,非小細胞肺癌(NSCLC)佔八至九成。畢業於國立陽明交通大學醫學系光電組的王廷瑋,在陽明交大學生物醫學暨工程學院副院長與生醫光電研究所特聘教授吳育德的指導下,發表博士論文「結合人工智慧與影像組學方法輔助非小細胞肺癌病患之臨床決策」,設計一款幫助非小細胞肺癌病患更精準選擇治療方式的模型,對未來的醫療決策有卓越的貢獻,榮獲第五屆方賢齊博士論文頭等獎肯定。 在癌症的病例中,每位患者根據個人體徵、基因的不同,所適用的治療模式也會有所不同,且治療結束後,仍有病情復發的可能性。吳育德說:「你其實可以把我們的設計看成是一個算命的模型。」藉由建立病患的個人資料,包含抽血、驗尿、基因及影像數據,該模型能夠預測病患服用特定藥物後,有幾成機率會復原或是復發,幫助醫生更準確地規劃療程。「癌症治療非常昂貴,且可能產生副作用。」王廷瑋補充道,希望藉由建立預測模型,減少病患所需花費的各項成本。 在過去的研究中,主要依靠臨床病例與實驗數據預測患者治療後復原、復發的機率,近年則逐漸開始運用分析影像數據擷取重點特徵,或直接透過深度學習模型預測。然而傳統統計模型無法捕捉到個案先前病例、基因變異、體徵差異等可能對預後造成的不同影響。本研究改良並設計更具應用價值的預測模型,不僅包含容易理解的影像特徵,也在傳統模型中融入AI,分析受多種複雜因素交互影響的個案數據,與過去僅能在獨立特徵間進行分析的線性模型(註)相比,此模型突破以往的局限。 註:線性關係:兩個變量之間的關係可以用一條直線表示。當一個變量改變時,另一個變量也會按固定的比例改變。非線性關係:兩個變量不再是依固定的比例變化,而是受多種複雜因素交互影響。 此外,王廷瑋也深入多間醫療機構進行測試,結果顯示,此模型在預測12個月的疾病進展準確率大約可達77%。研究目前主要收集針對標靶及免疫治療的數據,建立肺癌預後模型。期望未來能逐步引入不同治療方法的數據進行訓練,從而建立更為全面的系統,提升病患的生活品質。 臺北榮民總醫院新竹分院胸腔內科主任醫師邱華彥說:「此模型自動化的影像判讀輔助系統,可以加速檢驗流程、減輕放射科醫師負擔,並幫助第一線臨床醫師更快擬定治療計畫。」有效節省病患與醫師時間。但他也提醒,訓練資料集的不足是研究最有可能遇到的狀況,需要結合數家醫院的資料一起訓練,或成立更大規模的線上平台。