跳到主要內容

新聞期別 :

關鍵字搜尋 :

首創以鎂製燃料電池 輕巧設計備災更便利
新知
第1787期
首創以鎂製燃料電池 輕巧設計備災更便利
2023-11-30
【記者李雨羲綜合報導】當災害發生時,電池經常作為避難設備的能源,然而傳統的緊急發電裝置,大多不利於攜帶與長期用電。因此,來自國立臺灣海洋大學海洋環境資訊系的蕭采宣與輔仁大學財經法律學系的賴廷愷,研發出「微型空氣發電機」,以鎂—空氣燃料電池作為主要發電動力的裝置,不僅體積小且輕便,更結合綠色化學思維使用環境友善的材料。此研發在2023第七屆全國「慈悲科技創新競賽」取得第一名的佳績,同時為儲能備災的應對方式提供新選擇。 團隊研發的「微型空氣發電機」於2023第七屆全國慈悲科技創新競賽中獲得第一名與特別獎的榮耀。  圖/賴廷愷提供「過去常用的乾電池和充電電池容量有限,汽柴油發電機又非常笨重。」賴廷愷表示,本次研發的鎂—空氣燃料電池重量只有430公克,相較於過去的發電機更便於攜帶。同時,發電機除了本身安裝LED照明,也可藉由連接USB插孔,供電給其他電子產品使用。 目前發電機以個人攜帶為主進行較為簡易的設計,團隊表示未來可透過加裝渦輪、改變電池排列等等方式,提高發電功率。  圖/賴廷愷提供使用發電機時只需將鎂金屬顆粒透過上方孔洞投入,並從另一個管道倒入檸檬酸等酸性液體,即可藉由內部的燃料電池發電。電壓大約5伏特、電流1.5安培,適用於大部分的一般電器,並且10公克的鎂金屬便可以持續用電一天。而在材料的保存與補充上,只需將鎂金屬與發電機分開存放即可,無須特殊包裝或容器,更沒有保存期限的限制。此外,若鎂金屬使用完畢,也可以直接於一般材料行購買。「我們曾試過以鋁作為燃料發電,但它會產生環境難以處理的廢棄物。」蕭采宣表示,在媒材挑選上,他們嘗試結合綠色化學思維,將對環境影響程度納入挑選金屬燃料的考量,所以選擇不會產生毒性的鎂,作為與氧氣作用的電池陽極端。而在打造發電機外殼時,則選用在自然環境中可自行分解的塑膠。「設備以鎂與空氣作為燃料,同時也回收兩者反應所產生的氫氣進行發電。」賴廷愷說明,發電機以開放式孔洞讓空氣能夠自然流入,並以能夠吸附氧氣的活性碳多孔結構,在燃料電池中與鎂金屬產生反應。而為了將額外生成的氫氣自然回收,他們在內部裝設氫—空氣燃料電池,不僅可以減少氫氣外洩的可能性,更能藉此產生更多電能。 發電機內部不僅裝設鎂—空氣燃料電池,更使用氫燃料電池回收鎂與氧反應後的生成物進行二次發電。 圖/賴廷愷提供。談及未來發展,蕭采宣表示可以嘗試透過改變電池排列等方式,擴大發電機規模及實用性,將個人使用延伸至社區家用。對此,國立清華大學工程與系統科學系暨研究所教授陳燦耀則說:「鎂金屬作為儲能與發電互補的供電系統,確實有其亮點,若可進一步提高容量與能量密度,前景可期。」但他也提到,日前的技術尚未成熟。相較於現階段常見的鋰電池或正在積極研發的鈉電池,鎂電池容量與功率較小,及原料地球存量較低,後續發展與技術突破仍待努力。
取代燃燒垃圾製程 光催化劑分解塑膠發電
新知
第1718期
取代燃燒垃圾製程 光催化劑分解塑膠發電
2019-12-18
【記者阮珮慈綜合報導】據世界經濟論壇(World Economic Forum, WEF)發布的報告指出,塑膠製造量在未來20年預計會倍增,但塑膠的回收率卻停滯不前。新加坡南洋理工大學化學及生物化學系助理教授蘇漢昇指導學生,成功利用光把塑膠垃圾分解成能做為氫燃料電池發電原料的甲酸,盼以對環境無害的方式減少塑料廢棄物。 新加坡南洋理工大學化學及生物化學系助理教授蘇漢昇指導學生,成功利用釩基光催化劑降解塑膠產生甲酸,可用於發電。圖左為團隊學生陳國富,右為教授蘇漢昇。 圖/陳國富提供根據《國家地理》報導指出,「燃燒」為現今將垃圾轉製成能源的普遍方式,過程中可能會排放低濃度的戴奧辛、酸性氣體和重金屬等有毒物質。蘇漢昇說:「我希望能使用化學方法來幫助人們解決問題。」他期望本次研發能夠解決全球暖化和環境浪費等問題,並強調此作法不會造成環境汙染且成本低廉,將有助於塑料廢棄物大規模轉換成可用乾淨能源。團隊成員陳國富說明,他們首創將含有可與生物相容的化學化合物「釩基」做為光催化劑,他解釋說:「想像塑膠上有一長串的碳,釩基光催化劑能幫助將碳切割下來,和空氣反應成氫氧基和甲酸。」當釩基與塑膠垃圾一同溶解在有機溶劑乙腈裡,釩基會與塑料中「氫氧基」的氧原子銜接,在外部光源的照射下,釩基可協助反應使塑料內含的碳碳鍵斷裂,產生氫氧基和甲酸。其中,氫氧基可再投入反應分解塑料,而甲酸則可被蒐集起來生產氫氣,製成氫燃料電池或防腐劑。國立成功大學生命科學系學生吳奇駿認為,此研發可望解決自然界無法完全分解塑膠的問題,但反應中的塑膠必須含有氫氧基為一大限制。「常用的塑膠製品如寶特瓶、塑膠袋等幾乎都沒有氫氧基。」吳奇駿解釋說,若未來有技術可在所有塑膠中加入氫氧基,也許能擴展該方法的應用範圍。團隊成員黄韵如也盼望未來該研發可以更加符合市場需求,真正解決塑膠廢料問題。 團隊成員陳國富解釋,釩基光催化劑能幫助將塑膠上的碳切割下來,和空氣反應成氫氧基和甲酸,該研發目前獲得實驗室級階段性成功。 圖/陳國富提供環境資訊中心秘書長陳瑞賓對於此研發表示樂見其成,但他說:「許多號稱能分解塑膠的方法,可能因成本太高或只能作用於特定條件,沒有產生革命性的轉變。」蘇漢昇也坦言,目前團隊已成功將少量塑膠碎片轉化為甲酸,獲得實驗室級的階段性成功,陳國富則強調,實驗室未來會繼續改良釩基光催化劑,使之在水中也能發生反應,進而解決海洋廢棄塑料問題。
綠能發展新選擇 電漿子奈米天線提升析氫效率
新知
第1693期
綠能發展新選擇 電漿子奈米天線提升析氫效率
2018-12-21
【記者范莛威綜合報導】氫能源為現今社會發展綠能的重要方向,除了化石能源製造氫之外,另一種方法則為電解海水取得氫,可因此法成本較高尚未普及。國立清華大學材料所博士生沛維翠和蘇東盛,在清大材料所教授嚴大任的指導下,完成了「電漿子奈米天線搭配雙層二硫化鉬實現高效率析氫反應」論文,可讓電解海水的析氫效率提升30倍以上,進而降低製氫成本。目前現況大多以化石能源製氫,但因天然氣的成本經常浮動,和開採化石能源消耗地球資源,利用此方法製氫並非最佳,而電解水製造氫,則碰到催化劑二硫化鉬的效率低落、花費高等問題。此研究便是將奈米天線加入進二硫化鉬中,讓整套系統的效率提升。 奈米天線與二硫化鉬結合的示意圖,將奈米天線放置在二硫化鉬薄膜之下。 圖/范莛威製作利用光反應分解水取得氫的過程中,因為二硫化鉬的半導體特性、導電性及化學穩定性佳,故以其為催化劑,而在催化劑中加入電漿子奈米天線,可使二硫化鉬的光催化效應提升,便能捕捉更多的光,蘇東盛說:「就像大力水手吃了菠菜,加入奈米天線的二硫化鉬,析氫的效率就會大大提升。」此研究成果被選為國際能源期刊《前瞻能源材料》(Advanced Energy Materials)十月版的封面故事。 二氧化鉬結合奈米天線產生析氫反應示意圖,該示意圖同時被選上Advanced Energy Materials 期刊封面。 圖/蘇東盛提供在研究中最花時間的,便是構思整個概念,嚴大任說:「主要是和學生討論奈米天線的設計,以及如何最佳化它的效率,大致解釋清楚後,學生就會繼續做下去。」嚴大任也提到,研究後的成果要商業化,必須克服降低成本與奈米天線大面積生產的問題。「目前奈米天線是以電子束微影製作,成本高且時間長,未來將尋找替代製成來大面積製造。」蘇東盛補充。除了製造氫之外,如何運送且保存氫也是一大困難。在氣體中,氫氣屬於易燃氣體,高壓儲存也容易導致爆炸。且氫為無味氣體,若是洩漏在空氣中,也會難以察覺。氫能的應用範圍相當廣泛,例如:燃料電池汽車、燃料電池發電等等,且氫氣屬於環境友善能源,採用氫氣發電不會排放大量二氧化碳。立法院於2015年通過「溫室氣體減量及管理法」,將對排放溫室氣體的企業收費。蘇東盛說:「而若未來達成大量產氫的目標,相信對於未來能源的選項提供另一種選擇。」
置頂