您的瀏覽器不支援 JavaScript喔,請開啟 Javascript 功能。
跳到主要內容
新聞總覽
view
更多新聞總覽
國際
紐大學生要求擴大反歧視法 推動多元族群自主權
2024-11-08
國際
印度梅大學程未獲認證 護理系學生抗議持續升溫
焦點
2024-11-08
國際
達大附屬7學院控待遇不公 學生盼獨立成新校
焦點
2024-11-08
國際
馬來西亞租屋爭議頻傳 青年組自治會仍難自保
2024-11-08
國際
中國大學學歷貶值 失業率過高致青年就業壓力大
2024-11-08
國際
日本青年選舉參與度低 大學生組織望提升投票意願
2024-11-08
國際
港府欲整治假學歷 學生質疑政策治標不治本
2024-11-08
校園
國際
新知
藝文
生活
體育
專題
影音
首頁
新聞總覽
全部文章
返回首頁
新聞期別 :
請選擇...
第1798期
第1797期
第1796期
第1795期
第1794期
第1793期
第1792期
第1791期
第1790期
第1789期
第1788期
第1787期
第1786期
第1785期
第1784期
第1783期
第1782期
第1781期
第1780期
第1779期
第1778期
第1777期
第1776期
第1775期
第1774期
第1773期
第1772期
第1771期
第1770期
第1769期
第1768期
第1767期
第1766期
第1765期
第1764期
第1763期
第1762期
第1761期
第1760期
第1759期
第1758期
第1757期
第1756期
第1755期
第1754期
第1753期
第1752期
第1751期
第1750期
第1749期
第1748期
第1747期
第1746期
第1745期
第1744期
第1743期
第1742期
第1741期
第1740期
第1739期
第1738期
第1737期
第1736期
第1735期
第1734期
第1733期
第1732期
第1731期
第1730期
第1729期
第1728期
第1727期
第1726期
第1725期
第1724期
第1723期
第1722期
第1721期
第1720期
第1719期
第1718期
第1717期
第1716期
第1715期
第1714期
第1713期
第1712期
第1711期
第1710期
第1709期
第1708期
第1707期
第1706期
第1705期
第1704期
第1703期
第1702期
第1701期
第1700期
第1699期
第1698期
第1697期
第1696期
第1695期
第1694期
第1693期
第1692期
第1691期
第1690期
第1689期
第1688期
第1687期
第1686期
第1685期
第1684期
第1683期
第1682期
第1681期
第1680期
第1679期
第1678期
第1677期
第1676期
第1675期
第1674期
第1673期
第1672期
第1671期
第1670期
第1669期
第1668期
第1667期
第1666期
第1665期
第1664期
第1663期
第1662期
第1661期
第1660期
第1659期
第1658期
第1657期
第1656期
第1655期
第1654期
第1653期
第1651期
第1650期
第1649期
第1648期
第1647期
第1646期
第1645期
第1644期
第1643期
第1642期
第1641期
第1640期
第1639期
第1638期
第1637期
第1636期
第1635期
第1634期
第1633期
第1632期
第1631期
第1630期
第1629期
第1628期
第1627期
第1626期
第1625期
第1624期
第1623期
第1622期
第1621期
第1620期
第1619期
第1618期
第1617期
第1616期
第1615期
第1614期
第1613期
第1612期
第1611期
第1610期
第1609期
第1608期
第1607期
第1606期
第1605期
第1604期
第1603期
第1602期
第1601期
第1599期
第1598期
第1597期
第1596期
第1595期
第1594期
第1593期
第1592期
關鍵字搜尋 :
搜尋
全部文章
校園
國際
新知
藝文
生活
體育
專題
影音
新知
第1798期
台大創生成式資料庫模型 優化中小企業數據管理
2024-11-07
【記者楊凱傑報導】生成式AI應用降低寫程式的技術門檻,國立成功大學資訊工程學系碩士生陳冠言、國立台灣大學土木所電腦輔助工程組碩士生陳佩慈、胡羽忻、楊建恆組成研發團隊,以「生成式AI幫助架設和更新資料庫」降低架設資料庫的技術難度,於10月19日榮獲2024年GenAI Stars創意創客組大專社會組特優。 現今中小企業在數位轉型過程中需藉由資料庫統整數據內容,然而資料庫的建立因系統操作複雜,需具備特定知識和技能,而市面上的資料庫設計與維護工具,價格昂貴且缺乏智慧化建議和易使用的介面,因此多數企業需聘請專業資料庫團隊負責,可中小企業因人力、金錢資源有限而難以負擔,而限制了數位轉型的普及性。談及此次研究為何以中小企業為目標客群,陳冠言認為中小企業具有一定市場規模,「臺灣目前的產業結構,大概有九成都是中小型的企業,因此我們想抓住這個潛在的客戶。」 團隊此次研發的生成式 AI 技術為中小企業降低資料庫管理門檻,提升企業競爭力。楊建恆表示專案利用開源模型,並加以修改,有效降低開發和使用成本。而當中的「GenDB生成式AI資料庫管理助手」目標是讓沒有技術背景的使用者也能輕鬆操作資料庫,胡羽忻說明:「像是我們平常在用chatgpt,其實你只要打一些自然語言,就是我們平常講的話,然後它就可以生成一些對應的指令」,使用者只需以對話的形式向AI輸入指令無需額外學習程式碼,使資料庫管理更加平易近人。 團隊此次研發新型微調(Fine-tuning)技術來增強大型語言模型LLM(註一)在資料庫管理的能力。楊建恆解釋微調是透過人類指導來讓模型學習更複雜、細微的,提升模型的可控性,使結果產出更符合使用者預期,並讓預先訓練好的模型能夠適應特定任務或領域。同時透過強化式學習資料庫,收集理想答案(正向資料)及大型語言模型常犯的錯誤(負向資料),讓模型從正向資料中學習,降低錯誤的再犯率,「就像教導一個孩子正確的行為方式一樣,告訴他什麼是錯的,甚麼是對的。」陳冠言補充說。 註一:透過分析大量語言資料,理解和產生人類語言文字的人工智慧 (AI) 程式 楊建恆分享在研發過程中,因學生身分而受限於硬體設備不足,「模型訓練需要大量的運算資源,我們只能使用自己的電腦或學校有限的 GPU 資源,因此限制模型訓練的效果。」使得現今模型的成功率仍待改進,陳佩慈也表示團隊主要使用現有的開源資料進行模型訓練,如果能自行建立訓練或取得更完善、更多種類的數據,產出結果將可更精確。且團隊目前仍缺乏評估模型成效的客觀標準,需要進一步透過實際使用者測試才能驗證系統的易用性和實用性。 團隊表示在短期內期望先完善模型,並設計一個更精細的使用者介面,並希望後續能和企業合作,將 GenDB 實際應用於企業的資料庫管理工作中,採用訂閱制,為使用者提供長期服務。國立政治大學資訊科學系助理教授邱淑怡認為該專案有望解決資料庫架設難度,「可由於該專案仍在規劃中,實際應用上尤其數據收集,與在校內研究應該會很不同。」